Swift Observations of GRB 100704A D. Grupe (PSU), J.R. Cummings (NASA/GSFC), N.P.M Kuin (MSSL-UCL), J.M. Gelbord (PSU), C. Gronwall (PSU), D.M. Palmer (LANL), S.T. Holland (GSFC/USRA), S. D. Barthelmy (NASA/GSFC), D.N. Burrows (PSU), P. Roming (PSU), and N. Gehrels (NASA/GSFC) for the Swift Team #### 1 Introduction At 03:35:08 UT on 2010-07-04, the Swift Burst Alert Telescope (BAT) triggered and located GRB 100704A (trigger=426722). Swift slewed immediately to the burst and found an X-ray counterpart of the burst in the XRT (Grupe et al., GCN Circ. 10929) The best *Swift* position of this burst is the XRT position given in Osborne et al. (*GCN Circ.* 10930) with RA-2000 = 08h 54m 33.92s, and Dec-2000 = -24° 12′ 09.7″ with an uncertainty of 1.7″. The burst was also detected by the FERMI GBM (S. McBreen, GCN Circ. 10933), KONUS-WIND (Golenetskii et al., GCN Circ. 10937), and INTERGRAL SPI (V. Beckmann, priv. comm.). The spectrum measured by FERMI and KONUS-WIND can be described by a band function with a low-energy spectral slope 0.75 and an $E_{\rm peak} = 176^{+35}_{-24}$ keV. ### 2 BAT Observation and Analysis At 03:35:08 UT on 2010-07-04, the Swift Burst Alert Telescope (BAT) triggered and located GRB 100704A (trigger=426722, Grupe et al., GCN Circ. 10929). Using the data set from T-240 to T+962 s, the BAT ground-calculated position is RA, Dec = 133.639, -24.202 deg which is RA(J2000) = 08h 54m 33.3s $Dec(J2000) = -24^{\circ} 12^{'} 08.0^{''}$ with an uncertainty of 1.0 arcmin, (radius, sys+stat, 90% containment). The partial coding was 85% (Cummings et al. GCN Circ. 10932). The mask-weighted light curve (Figure 1) shows an initial very weak peak starting at T-70 s and peaking at T-60 s. Then comes the main peak starting at T-5 s, peaking at T+1.5 s, and ending at T+50 s. That is followed by a small peak at T+100 s, and then a larger peak from T+140 to T+210 s. This peak is also seen in the XRT (see below). T_{90} (15-350 keV) is 197.5±23.3 s (estimated error including systematics). The time-averaged spectrum from T-62.3 to T+202.3 s is best fit by a single power law model. The power law index of the time-averaged spectrum is 1.73 ± 0.06 ($\chi^2=57$ for 57 d.o.f.). For this model the total fluence in the 15-150 keV band is $6.0\pm0.2\times10^{-6}$ ergs cm⁻². The 1s peak photon flux measured from T+0.76 s in the 15-150 keV band is 4.3 ± 0.2 photons s⁻¹ cm⁻². All the quoted errors are at the 90% confidence level. The results of the batgrbproduct analysis are available at http://gcn.gsfc.nasa.gov/notices_s/426722/BA/ ## 3 XRT Observations and Analysis The XRT began observing the field of GRB 100704A at 03:36:34.9 UT, 86.2 seconds after the BAT trigger. Using 3449 s of XRT Photon Counting mode data and 7 UVOT images for GRB 100704A, Osborne et al. (*GCN Circ.* 10930) found an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA, Dec = 133.64132, -24.20269 which is equivalent to: ``` RA (J2000): 08h 54m 33.92s Dec (J2000): -24° 12′ 09.7″ ``` with an uncertainty of 1.7'' (radius, 90% confidence). The latest position can be viewed at http://www.swift.ac.uk/xrt_positions. Position enhancement is described by Goad et al. (2007, A&A, 476, 1401) and Evans et al. (2009, MNRAS, 397, 1177). A spectrum formed from the WT mode data (317s exposure) can be fitted with an absorbed single power-law model with a photon spectral index of 1.96 ± 0.04 (Grupe, GCN Circ. 10935). The best-fitting absorption column is $3.23\pm0.14\times10^{21}$ cm⁻², in excess of the Galactic value of 1.0×10^{21} cm⁻² (Kalberla et al. 2005). With an excess absorption column density of 2.32×10^{21} cm⁻² the N_H -redshift relation by Grupe et al. (2007, AJ 133, 2216) suggests a redshift z<3.0. The PC mode spectrum has a photon index of $\Gamma = 2.6\pm0.3$ and a best-fitting absorption column of $3.1^{+0.9}_{-0.8}\times10^{21}$ cm⁻². The counts to observed (unabsorbed) 0.3-10 keV flux conversion factor deduced from this spectrum is 3.5×10^{-11} (8.3×10^{-11}) erg cm⁻² count⁻¹. The $0.3-10\ keV$ light curve given below (Fig.2) displays a standard X-ray light curve (Nousek et al. 2006, Zhang et al. 2006) with several episodes of flaring. The burst showed a strong flare starting about 140s after the trigger, peaking at T+190 s. This flare was also seen in the BAT. The light curve is followed be a second, much weaker flare at about T+1000 s. After these initial flares, the X-ray afterglow light curve can be modeled with a multiple broken power-law model with the following decay slopes and break times: ``` \alpha_2 = 0.75 \pm 0.04 T_{\text{break1}} = 21.9^{+9.1}_{-7.5} \text{ ks} \alpha_3 = 1.19 \pm 0.10 T_{\text{break2}} = 300^{+55}_{-17} \text{ ks} \alpha_4 = 1.90^{+0.25}_{-0.20} ``` # 4 UVOT analysis The Swift/UVOT began settled observations of the field of GRB 100425A 96 s after the BAT trigger (Grupe et al., GCN Circ. 10929) with the finding chart in white filter. Kuin & Grupe (GCN Circ. 10934) reported that no optical afterglow was detected within the enhanced XRT error circle position (Osborne et al., GCN Circ. 10930). 3σ upper limits for the summed images are listed in Table 1. | Filter | $T_{ m Start}$ | T_{stop} | Exposure | Mag | |--------------|----------------|---------------------|----------|--------| | white_FC | 96 | 246 | 147 | >21.0 | | u_FC | 308 | 558 | 246 | > 20.2 | | white | 96 | 6544 | 746 | > 21.8 | | \mathbf{v} | 638 | 6955 | 471 | >20.0 | | b | 564 | 6339 | 452 | > 21.1 | | u | 308 | 6132 | 678 | > 21.1 | | w1 | 688 | 5927 | 255 | > 21.1 | | m2 | 662 | 7075 | 387 | > 20.2 | | w2 | 613 | 6750 | 471 | > 20.7 | Table 1: Magnitudes from UVOT observations of GRB 100704A. The quoted upper limits have not been corrected for the expected Galactic extinction along the line of sight of $E_{\rm B-V}=0.17$ mag. All photometry is on the UVOT photometric system described in Poole et al. (2008, MNRAS, 383, 627). Figure 1: BAT Light curve of GRB 100704A. Figure 2: XRT flux light curve of GRB 100704A in the 0.3-10 keV band. The approximate conversion is 1 count s⁻¹ = $\sim 3.5 \times 10^{-11} {\rm ergs~s^{-1}~cm^{-2}}$.